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Abstract​—​The paper presented details the design      

choices and experimental trials that resulted in Auri,        
the new robot by the Autonomous Robotic Vehicle        
Project for RoboSub 2017. With a new robot and team          
structure, the team is more agile and financially stable         
than ever before. The result is a robot redesigned to far           
exceed the mechanical, electrical and software      
capabilities of its ancestors.  

I. INTRODUCTION 
This year the Autonomous Robotic Vehicle      

Project’s goal was to address the failings of the         
previous robot, AquaUrsa, while expanding on its       
strengths. The mechanical design was intended to       
eliminate the the robot’s weight issue by narrowing        
the hull, while keeping the previous design’s       
cylindrical fortitude. The design also allowed us to        
access our electrical components without risking      
damage to the systems. Electrically, the team aimed        
for a revamped power system that eliminated       
variability, and would be able to deliver power from         
new lower voltage batteries, while powering many       
new and redesigned onboard systems. Software-wise,      
focus was placed on algorithms for navigation,       
computer vision, and deep learning. Finally, a       
dedicated business team was created, giving ARVP a        
new financial foundation to succeed this year and in         
the future. 

II. SOFTWARE 
Auri’s software system is composed of several        

distinct modules; ​Sensor Drivers​, ​Computer Vision​,      
Mission Planning ​and ​Diagnostics​. All these      
components are connected through the Robot      
Operating System (ROS), an open source      
communications library. ROS was chosen as a       

software framework because it supports a highly       
distributed system, which lets Auri maximize the use        
of its two onboard computers. In addition, ROS        
nodes empower the software team to create modular        
code and consistent I/O endpoints, which have been        
invaluable to the development process. By leveraging       
each component separately, different techniques can      
be evaluated and iterated on quickly. For example,        
swapping computer vision algorithms at runtime to       
determine the best performing one given current       
conditions. 
 

Auri’s systems are distributed over two computers:        
the Nvidia Jetson TX2 and the Odroid C2. The two          
computers coordinate over the ROS communication      
protocol to split up the computational workload of the         
software tasks. Intensive computer vision     
computations are run on the Jetson to take advantage         
of its graphics processing unit (GPU). The Odroid        
handles the rest of the tasks, which includes gathering         
sensor data, updating the PID controllers, and       
monitoring the mission planner. 
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Fig 1.  Overview of software architecture 
A.  Control System 

Auri’s control system is the low-level framework        
that handles all of its movement and data collection         
processes. The first part is a collection of        
custom-made interfaces for all Auri’s sensors and       
motors, allowing each device to interoperate easily       
with higher-level software components. Among     
others, the drivers are responsible for initializing a        
device, communicating with it via the appropriate       
protocol, and passing information between devices      
and higher-level software components using ROS      
messages. Currently implemented drivers include: 

● A depth sensor driver that interfaces with       
the pressure transducer and informs other      
components of the measured depth. 

● A heading and acceleration driver that      
communicates with the compass,    
accelerometer, and gyroscope, providing    
other components with tilt-compensated    
heading and acceleration information. 

● A motor controller driver that accepts motor       
commands and generates the PWM and      
direction signals required by each of the       
thrusters. 

● A sonar driver that receives the      
time-differences-of-arrival of incoming   
sonar signals, and provides the results to the        
high-level sonar localization components. 

● A frame-grabbing driver that captures     
camera stills and provides them to the image        
processing components. 

 
B. Computer Vision 

This year, ARVP has made enormous strides in         
developing a computer vision system for Auri. Since        
these algorithms from previous years have never       
worked during the competition, it needed to be        
completely redeveloped keeping in mind two key       
principals: all new algorithms should work equally       
well during pool tests and on competition footage,        
and dependence on color should minimized or       
eliminated. This is because underwater image      
processing is affected by light attenuation and       
scattering, which results in poor contrast and       
non-uniform colors [1]. Instead, Auri’s new vision       
algorithms use the shapes of the competition objects        
(eg, Buoy, path, gate), which are more reliable        

indicators. In light of a completely revamped       
architecture, this year’s two main goals are to        
accomplish the buoy task and to follow the path. The          
three main vision algorithms used for target       
localization are: 

● Contour based shape detection 
● Parameterless Ellipse fitting 
● Deep Learning 

The vision algorithms are implemented using the       
OpenCV library [3] as well as LAPACK [4], a linear          
algebra package. To utilize the full capabilities of the         
Jetson TX2, the algorithms have been optimized for        
use on a GPU, especially when it comes to deep          
learning.  
 
i. Contour based shape detection 

The simplest method for identifying circular and        
rectangular objects without color dependance is      
contour detection. Using OpenCV’s Canny edge      
detector and HoughCircles function, rectangles and      
circles can be extracted from high-contrast images       
and filtered by their basic geometric features. This is         
useful for a multitude of tasks, from the path and          
marker bins to the torpedo targets. 
  
ii. Parameterless Ellipse fitting 

Combining a shape detector and a shape filter,         
parameterless ellipse fitting is a robust detection       
system for many elementary geometric shapes. For       
the competition, this technique is used to find the         
geometric center of buoys within the field of view         
and provides a viable alternative to deep learning        
techniques for buoy detection and classification. Fig.       
2 outlines the basic detection schema. 

 
Fig 2. Parameterless Ellipse Fitting Overview 

 
The method begins by extracting elliptical arc        

contours from an image using an Ellipse and Line         
Segment (ELSD) detector [10]. ​The detector obeys a        
3-step scheme: candidate selection, candidate     
validation, and model selection. The latter two are        
formally sound, being grounded on statistical      
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foundations [10]. Only the candidate selection is       
heuristic, for efficiency reasons.  
 

Once a set of candidate line segments and elliptical          
arcs have been collected, they are filtered for positive         
matches. Considering the simple vision environment      
underwater, it’s possible to design a shape filter        
based on some simple criteria. A buoy candidate        
must: 

● be an elliptical arc, 
● have a descriptive relationship between its      

start angle and end angle, and 
● exceed a minimum size threshold. 

 
While computationally expensive in conventional      

swimming pools, where candidates are plentiful, it       
proves much more accurate and efficient in the        
low-feature, low-contrast environment of the     
competition pool similar to Fig 3. To get valid         
detections at very long distances like those on the         
right of Fig 3, the detector switches from running on          
gray-scale imagery to using the saturation channel in        
HLS (or HSV) color space .  1

 

 
Fig 3. [Left] - Detection with caustics. [Right] - Detection         
from far away 

 
iii. Deep learning 

Another method used for object detection was deep         
learning. Deep learning refers to using artificial       
neural networks with more than one hidden layer to         
learn a function from training data. The advantage of         
deep learning is that it takes raw data as input and           
with enough training data can generalize well to a         
variety of scenes and conditions. 
 

A major concern when choosing a deep learning         
framework and model was deploying the trained       
model on the Jetson TX2. As a result two frameworks          
that would be easy to deploy were chosen for         
comparison: Darknet+YOLO [11] and    

1 ​Full size images are provided in Appendix B. 

Digits+Caffe+DetectNet [12]. Darknet is written in C       
so is can be integrated into Auri’s existing C++         
vision code and for DetectNet, NVIDIA has a        
inference library called TensorRT with a C++ api for         
deploying trained Caffe models on the TX2. In        
addition, both these methods can be trained for        
multiple classes.  
 

In order to compare the two frameworks, the first          
models were trained to detect only the red buoy. The          
datasets used for training and testing are a        
combination of all ARVP’s videos from past       
competitions as well as from the University of        
Alberta pool and split into training, validation and        
test sets. For the red buoy, there are 4386 training          
images, 1096 validation images and 1326 testing       
images. All the training was done on a AWS instance          
with one NVIDIA K80 GPU. Below, Table. I shows         
how each model performed on the test set.  

Table I 
DEEP LEARNING MODEL COMPARISON FOR RED BUOY CLASS. 

Model IoU 
(avg) Precision Recall Accuracy Fps 

DetectNet 77.79 96.38 96.26 94.49 4 

Tiny YOLO 61.33 84.73 89.98 79.94 8 

YOLO 77.18 90.56 99.55 99.54 3 

 
A intersection over union (IoU) of 50% was used          

to determine if a detection was correct when        
compared with the ground truth. Overall YOLO is the         
most accurate but DetectNet has higher precision.       
Tiny YOLO performs the worst out of the three,         
which is not surprising given that it is a smaller          
network. However, it has the fastest inference speed        
on the TX1 at 8 frames per second (Fps). The main           
problem with the Tiny YOLO model is the inaccurate         
bounding box size it estimates. If a 0.3 IoU threshold          
is used instead, the accuracy increases to 90%. Fig. 3          
shows some different situations where the models       
succeeded.  
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Fig. 4. [Top row] -Detection with caustics on the buoy,         
[Middle row] - Detection in darker condition, [Bottom row] -          
Detection from far away and with poor visibility 
 

As shown the initial results of applying deep         
learning to this problem are positive, therefore the        
team is moving forward with labelling the rest of the          
buoys and front path. In regards to improving        
processing speed, both YOLO models resize the       
image to 416X416 resolution before being processed       
by the network and therefore increasing the inference        
speed without lowering the accuracy is unlikely for        
Darknet as the input image resolution is already quite         
small. Whereas, DetectNet processes the original      
1280X704 resolution image as input; therefore,      
decreasing the image resolution could increase the       
processing speed for that model and this will be         
experimented with in the future.  
 
iv. Deep learning with Synthetic Images 

Another test performed was using synthetic images        
from a simulator, to train the deep learning object         
detection model. This experiment was inspired by the        
work of Shafaei et al. who used densely labeled         
images generated by video games to train a image         
segmentation models [14]. The reason for exploring       
this is to generate images of objects that ARVP has          
very little training data for. For example ARVP’s        
database of images has a large number of buoy         
images, but there are fewer with the path in them, and           
none with the torpedo target, or bins. In addition a          
simulator makes it easy to produce training data        
under a variety of different conditions ie. variable        
illumination, fog density, and caustic intensity.      
Ideally this will lead to a more robust detector.         
Finally the Unity simulator has been set up to         
automatically label the generated images removing      

the tedious task of labeling images by hand, the Unity          
project is discussed further in Section ​D​. 
 

For testing, two additional YOLO models were        
trained for red buoy detection, one with just synthetic         
images, and another with synthetic and real images.        
A comparison of these models and the initial model         
trained on only real images is shown in Table II.. The           
results show that the accuracy when training with        
only synthetic images is poor, suggesting that the        
Unity simulator is not photorealistic enough.      
However, when trained on both synthetic and real        
images the number of false positives decreases,       
increasing the precision by 8%, and with only a 1%          
drop in overall accuracy. While the results below are         
very encouraging, further experiments need to be       
performed with multiclass models.  

Table II 
YOLO MODEL COMPARISON WITH SYNTHETIC DATA FOR RED BUOY CLASS. 

Dataset IoU 
(avg) Precision Recall Accuracy 

Real 77.18 90.56 99.55 99.54 

Synthetic 60.34 88.42 47.71 45.48 

Real + Synthetic 75.28 98.57 99.16 98.49 

 
C. Mission Planner 

While attempting to outline an increasingly       
complex series of tasks this year, the software team         
quickly discovered that the old mission planning       
codebase was too large and error-prone. Prompted by        
these difficulties, the team decided that high-level       
control of robot operations should be handled by a         
single hierarchical state-machine. The software team      
selected SMACH[9], an open source ROS package,       
for this task to ensure an extensible structure and         
robust error handling.  
 

A major success of this year’s mission planner is          
its simplicity. With the bulk of the application logic         
modularized in ROS action and service clients, the        
mission planner's only concern is top-level logic,       
calling child nodes and piping data from one process         
to another. Additionally, SMACH’s hierarchical     
structure allows each task to be a state machine         
which can be added to other state machines, further         
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simplifying readability and maintainability. One     
nice-to-have feature of the SMACH library is the        
ability to visualize states and state transitions as a         
high-level flowchart. Not only does this mean       
implementing new tasks is an intuitive process, but        
also that coded states can easily be debugged and         
compared against pre-drawn plans.As such,     
implementing complex behavior has become feasible.      
For instance, when the tracker loses a buoy it makes          
the appropriate transition to attempt a re-detection or        
begin a search pattern to relocate it. Below in Fig. 5           
is the state machine design used for the buoy task.  

 
 
Fig 5. Buoy task state machine 
 

D. Simulator 
This year a simulator was built in order to test           

vision and control algorithms. The insight to build a         
simulator came from other teams at the competition        
last year. The software team took advantage of the         
open source underwater simulator UWsim [13] for       
marine robotics research and reconfigured it to       
simulate ARVP’s robot. Using the simulator is useful        
for testing the entire software stack together, makes        
debugging control logic easier and helps new       
members learn ROS.   

 
Fig 6. [Left] Simulator overview showing full course [Right]       
Unity simulator showing three buoys  

 
However, the image quality of the simulator was         

not sufficient to be used as training data when it          
comes to deep learning and realistic underwater       
caustics. Therefore, an additional simulated scene      
was built using the Unity Game Engine. The high         

resolution and fast rendering comes in handy and        
helped generate synthetic images. Fig. 6 [Right]       
shows an screenshot from the Unity scene.  

III. MECHANICAL 
ARVP’s previous autonomous underwater robot,      

AquaUrsa, was retired after 4 years and three major         
rebuilds. Even though AquaUrsa had shown fantastic       
reliability within the last few years, signs of fatigue         
and material failure led the mechanical team to the         
retirement decision in 2016. A subteam was created        
early that year dedicated to designing a new robot for          
Robosub 2017. In December the robot’s design was        
finalized, the engineering calculations were     
completed and the robot was named Auri.  
 

Inspired by the fictional spaceships TIE Fighters        
from the movie franchise Star Wars, an octagonal        
outline was given to Auri. In Auri’s design process,         
the team aimed for keeping AquaUrsa’s best       
characteristics and improving the weaknesses. The      
aluminum frame and the transparent acrylic hull were        
two of the most important characteristics that were        
passed on to Auri. Three subassemblies were also        
successfully integrated into Auri without any changes       
from when they were used on AquaUrsa (battery        
enclosures, torpedo assembly and the marker      
droppers). With 6 degrees of freedom as compared to         
5 in AquaUrsa, a 30-pound drop in weight to 60          
pounds and a significantly cheaper cost of       
manufacturing, Auri is without a doubt the most        
incredible underwater robot that ARVP has ever       
designed, as shown in Fig. 8. 

                  
Fig 8. Auri, all mechanical components assembled 
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A. Hull 
The hull for the new robot was completely         

redesigned. The best parts of the old design were kept          
in mind, but new innovative ideas were also        
incorporated to solve issues from previous years. The        
final design is strong, convenient, practical, and       
aesthetically pleasing. It is composed of a central        
aluminum section from which the electronics trays       
are supported and two acrylic tubes on either side         
which cover and house the trays as seen in Fig 9. The            
elegant, clear ¼” acrylic tubes allow for both        
amazing visibility of the electronics trays and easy        
access as the tubes can quickly be removed to expose          
the trays. This means that the trays, although easily         
removed themselves, can be worked on without       
detaching them from the robot. The inner diameter of         
the tubes is 7.5”, which is much smaller than that of           
the previous hull. This was chosen to reduce the         
buoyancy of the robot and thus reduce the weight         
required to sink it. The end caps are also disks of           
clear acrylic to provide clear visibility for the        
onboard cameras. The cylindrical shape of the acrylic        
allows for even pressure distribution to reduce stress        
and the octagonal shape of the aluminum section        
provides multiple flat surfaces for easy mounting of        
components. Aluminum was chosen for the central       
section because of its non-magnetic property so it        
would not cause a magnetic interference with any of         
the electrical components. It is also very easily        
machined, allowing for this custom octagonal shape       
to be made. The flat surfaces of the central section          
allow for subconn connectors and cable penetrators to        
be mounted for connection between the electrical       
boards inside the hull and the components outside of         
it. The cylindrical steps on either side of the         
aluminium allows for two sets of o-rings to be         
mounted to provide a watertight seal on the hull.         
There is also versatility in the orientation of the         
electrical trays as they can slide into the hull in either           
the horizontal orientation or the vertical orientation       

depending on current preference.   

 
 

Fig 9. Aluminum hull with acrylic end caps solidworks model 

 
B. Frame 

Auri’s frame was designed to be more compact,         
functional, and aesthetically pleasing than ARVP’s      
previous robot. The hull is friction-fit with two        
complete octagonal rings that are bolted to two        
L-bars. Attached to these bars are six aluminum ribs,         
making up the two wings. All components are located         
inside the wings, providing protection during      
transportation. Moreover, portability is increased due      
to four rubber handles attached to the ribs. Bolted to          
the ribs are multiple trays and side panels. The trays          
and panels allow for the easy attachment and removal         
of a variety of components, including torpedoes,       
thrusters, and marker droppers. The new frame       
design embodies compactness without sacrificing     
functional space; this allows for mounting of future        
mechanisms such as a cooling system or mechanical        
arm.  
 
C. Battery Enclosures 

Auri has two separate battery enclosures, which        
rest by the hull on aluminum sheets that are mounted          
to the frame.The battery enclosure is made out of         
3.5-inch acrylic cylinders, which is sealed at both        
ends with aluminum o-ring flanges. The caps of the         
assembly are designed with 1/2-inch acrylic ends. 
 
D. Marker Release Mechanism 

Auri has been equipped with two marker droppers         
located underneath the pressure hull. The markers       
themselves are torpedo shaped steel tubes fitted with        
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acrylic fins to ensure stability and optimum accuracy.        
The marker release mechanism used involves holding       
the steel markers in place by a magnet. When the          
target area is identified by the interior cameras, a         
waterproof servo will move the magnetic field away        
from the dropper causing it to fall onto the target          
area. The component housing was 3D printed out of         
ABS plastic to ensure that the magnetic nature of the          
system is not compromised by other ferromagnetic       
metals. This also makes for a simpler machining        
process. 
 
E. Torpedoes 

The torpedo launching module was designed to        
occupy the least amount of space while delivering the         
required pressure to propel the torpedoes. This was        
accomplished using CO2 cartridges that are small as        
compared to an air tank. The torpedo launching        
module consists of a CO2 bucket changer that allows         
for the quick replacement of the cartridges. The        
bucket changer is directly mounted onto an on/off        
ASA regulator. This design is rigidly mounted to        
Auri with the mounting plate from the solenoid valve         
and eliminates the use of macroline. Mounted on both         
solenoid valves is a solenoid-to-tube connector that is        
press fitted with a 123mm stainless steel pipe.  

IV. ELECTRICAL 
This year, the electrical team’s main focus was to          

integrate all of the dependable systems from       
AquaUrsa onto Auri, along with a multitude of        
upgrades. Since Auri is much smaller, revisions have        
compensated for this change in size without       
sacrificing overall performance. Additionally, Auri is      
now equipped with an array of voltage measuring        
devices and environment sensors such that Auri’s       
health can always be monitored. Some of the main         
projects completed this year include: an upgraded       
power board to supply all of the electronics inside the          
hull, hydrophone filtering and amplification to be       
used for sonar, an improved actuator control board,        
battery and voltage monitoring circuits, internal      
environment sensors and a simplified motor board,       
just to name a few. All of these systems fit inside a            
small hull, shown in Fig 9. Auri was designed with          
modulation and future advancement in mind, where       
all of the essential circuit boards come with        
additional room for expansion. This allows the easy        

addition and removal of peripheral systems, so that        
Auri is always prepared for the next big challenge. 

.  

Fig 10.  Exposed Auri Showing Internal Systems 
 
A.   Power Regulation 

The new power regulation board was meant to be a           
near drop-in replacement the board used in       
AquaUrsa, meaning that it needed to supply power on         
12V, 5V, and 3.3V rails and it needed to be          
controllable using a single pole remote switch.       
Beyond those specifications, the design of the new        
board began to deviate from that of the old board to           
reflect new or upcoming robotic requirements. This       
included higher power output, especially on the 5V        
and 3.3V rails. Other requirements included reverse       
input voltage polarity protection and current sensing.       
A figure of the power board can be seen in Fig. 10. 

i.  Switching Voltage Converters 
Three switching converters manufactured by Murata       

Power Solutions are chosen to power the 12V, 5V,         
and 3.3V rails. The converters can supply 120W,        
100W, and 100W respectively which gives the board        
an overall peak power output rating of 320W [15].         
These units accept input voltages ranging from 18V        
to 75V, provide isolated outputs, and include       
ON/OFF control topologies and voltage trimming      
capabilities. Each device uses the standard      
“eighth-brick” DC-DC converter package. 

In the datasheets, it is suggested that excessive input          
inductance can lead to significant output voltage       
ripple and can be mitigated with low ESR filtering         
capacitors. As such, the board is designed to offer the          
option of adding ceramic capacitors on the input and         
output nodes of the converters to reduce output        
ripple. It should be noted that the datasheets cautions         
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against adding excessive output capacitance to the       
converter output rails since it can lead to instability in          
the converter’s internal control system. Specifically,      
it states that the total capacitive load for each rail          
must not exceed 4700μF [15]. 

 ii.   Reverse Input Polarity Protection Circuit 
Since the voltage converters to not have any         

built-in reverse polarity protection, an external circuit       
is added to provide this layer of protection. It is          
centered around Q1, a p-channel MOSFET, which       
acts as a switch that turns on when the input polarity           
is positive and turns off when the polarity is negative.          
The p-channel style circuit was selected due to its         
good balance between efficiency and part count [16].        
The IPP120P04P4L03AKSA1 p-channel mosfet,    
manufactured by Infineon Technologies, was chosen      
in this design primarily for its very low ​R​DS of 3.4mΩ           
to minimize power losses as much as possible [17]. A          
10V Zener diode, represented by D1 in the schematic,         
is used to hold ​V​GS at -10V during the ON state. This            
is the optimal gate-source voltage for operating the        
mosfet [17]. 

When operating at peak power output, the        
converters would draw approximately 18A of current       
from the battery and through Q1 which would        
dissipate about 1.1W of heat and would have a         
temperature rise of about 70​ο​C above ambient. A        
TO-220 compatible heatsink could be used to lower        
the temperature rise, though it is unlikely that the         
total power output of the regulation board would        
reach peak levels continuously. 

                          

Fig 11.  Power Board Mounted on 3D Printed Tray 

iii.   Current Sensing 
Low resistance, precision shunt resistors are used        

to measure output currents. By measuring the voltage        
drop across these resistors, the current flowing       
through them can be calculated. 4±1%mΩ, 4W       

resistors were selected in this design, which will        
dissipate up to 1.6W of heat when 20A of current is           
drawn from a converter. Thanks to the voltage        
trimming capabilities of the converters, the voltage       
drop across the shunt resistors will not affect the final          
output voltage as the converters will automatically       
correct for it. 

iv.   Converter ON/OFF Control Circuit 
The selected UWE switching converters have a        

negative logic ON/OFF control scheme, meaning that       
when the ON/OFF control pin (RC in the schematic)         
is floating, it will turn off. If this pin is pulled to            
ground, or in this design to the negative battery         
terminal, it will turn on. As per the recommendations         
found in the UWE datasheets, an open-collector       
control circuit is used in the design to control the          
converters [15]. 
 
v.   LED Indication 

LEDs are used to indicate if the battery voltage is           
applied to the inputs of the converters or if the output           
rails are energized. Series connected resistors to limit        
current and its values can be determined during        
production to achieve a desired brightness. 
 
vi.  Fuse Selection 

The UWE datasheets recommend using 20A       
fast-blow fuses on the input side of the converters,         
however no readily available 5x20mm cartridge type       
fast-blow fuse of that rating could be found. Instead,         
slow-blow fuses were carefully selected by studying       
their average time current curves so that at 20A it          
would blow within 10 seconds [19]. As such, 8A 215          
series Littelfuse slow-blow fuses are selected for       
individual converter protection. A single 10A fuse of        
the same series is selected for protecting the battery,         
which blows after 1 second at 30A and 100 seconds          
at 20A. 

vii.  Input/Output Connectors 
The battery connector is a screw type 2 position,          

32A rated terminal block by Phoenix Contact [20].        
Due to PCB layout constraints, polarity markings are        
on the bottom of the board. The battery voltage can          
be measured by reading the voltage across the two         
pins in JP7. 

Wire pads are used as output rail connectors as is           
used in the currently used board. The holes are         
approximately 1.3mm in diameter and can have wires        
up to 17AWG soldered into it. A 2.54mm pitch male          
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pin header can supply 12V, 5V, and 3.3V to an          
expansion board if desired. 

B.    Voltage Monitoring 
The battery monitoring system is designed to        

monitor the voltages of the four batteries powering        
the robot and display them on an LCD in real time.           
The main system is incorporated into the power        
board; however, the LCD and a hall sensor are         
separate. The system uses two INA3221s to monitor        
the voltages of the batteries and the current from the          
motors. Each of the INA3221s can monitor up to         
three channels and detect load voltage, bus voltage,        
and current from each channel using small current        
sensing resistors. The INA3221s have several      
warning features such as power-valid, warning, and       
critical that are active based on the voltages        
measured. These features have not yet been coded or         
tested, but the wiring is there for future use. The          
system uses a teensy 3.2 to run the INA3221s, a          
standard 16x2 LCD, a shift register, and a hall sensor.          
The teensy was chosen due to its small size, low cost,           
and compatibility with Arduino software. To reduce       
the number of LCD pins required on the teensy from          
six to three, a 74HC595N shift register was added to          
the board. To conserve power, the backlight of the         
LCD can be switched on and off using a DRV5033          
digital omnipolar hall switch which will be mounted        
near the outside of the hull. In summary, the         
INA3221s measure the voltage and current values       
which are collected by the teensy. This data can be          
used by the software team to determine exactly when         
voltage or current drops occur. The teensy also sends         
the voltage data to the LCD mounted next to the hull           
which displays the values when a magnet is present         
near the hall sensor. 

C.   Internal Environment Sensing 

i.  Humidity and Temperature Sensor 
HoneyWell’s HIH7120 is a dual humidity and        

temperature sensor the purpose of which is to monitor         
humidity of the air inside the hull to possibly detect          
leaks and prevent equipment failures. The      
temperature sensor will be used to detect the internal         
temperature of the submarine so that equipment       
failure due to overheating may be avoided. This        
sensor was the best choice for several reasons        
including its digital output. The sensor outputs the        
data over I2C after the master device sends a         
measurement request otherwise the sensor is in a low         
power mode which conserves energy. The sensor also        
has an unlimited moisture sensitivity level meaning       
that the sensor won’t have to be replaced very often.          

This sensor also boasts a fast response time which         
will allow the submarine’s computer to dynamically       
monitor the humidity levels and be able respond        
quickly given a rapid change in the internal        
environment. While the sensor isn’t the most       
accurate, for the purposes of detecting a change in         
humidity it will work fine. Furthermore, the sensor’s        
small size will allow for it to be integrated into a           
smaller pcb conserving valuable space in the inside of         
the submarine. Finally, the sensor’s relatively low       
cost will be a benefit if the circuitry is damaged or           
more than one sensor is needed, inside the quad or for           
going through prototypes of the board as soldering        
the sensor to the board is tricky due to its small size. 

  ii.     Pressure and Temperature Sensor 
NXP MPL3115A2 is a dual pressure and        

temperature sensor. The pressure sensor is an       
absolute piezoresistive sensor, the purpose of which       
is to monitor the pressure inside the hull for any          
sudden changes which would indicate a hull breach        
or failure. This sensor was chosen also because if it’s          
digital I2C interface. This allows it to be directly         
interfaced with a microcontroller making the pcb       
design smaller and more compact. Next the sensor is         
quite accurate and has a quick response time allowing         
for the internal pressure to be dynamically monitored        
at a high degree of accuracy. This will allow the          
detection of minor changes in the pressure very        
quickly and allow the submarine to detect possible        
hull failures. This sensor is also quite small and low          
powering which offers the same advantages as       
described for the humidity sensor. Finally, the sensor        
is even lower cost than the humidity sensor allowing         
for multiple sensor to be purchase for multiple        
measurements prototypes and replacements. 

D.   Actuator Board 
The actuator board of Auri was designed to control          

all output devices on the robot other than the thrusters          
and motors. It features a Teensy 3.2 microcontroller        
that receives instructions from the ODROID via the        
microUSB port, and its GPIO pins control different        
components in the board. The board takes power        
inputs of 5V and 12V from the power board. This          
board is designed to control the marker dropper        
actuators, torpedo solenoids as well as the LED        
indication strip mounted internally inside the hull.  

V. BUSINESS 
The Business Team was created this year with the          

goal of transforming ARVP into a club that can         
compete toe-to-toe against its international     
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competitors. This started by creating a strong       
financial foundation, driven by a campaign to create        
value for its sponsors. The team would complete this         
objective on two fronts, one through community       
involvement, and two through direct benefits      
provided through our sponsorship package.     
Community outreach included high school     
demonstrations, organizing a monthly robotics     
conference, ROS Edmonton, at the municipal startup       
accelerator, and community volunteerism. The team      
put on a crowdfunding campaign through USEED       
that raised over $18,000. A business plan, budget,        
and monthly accounting balance sheets, gave ARVP       
a new level of accountability too. 

 
Fig 12. Advertisement for monthly ROS Edmonton event,       
giving tutorials on ROS and topics related to robotics and          
autonomy. 

VI.  Experimental Results 
ARVP began work on vision, and simulation in         

September 2016. By the beginning of this year, we         
started testing on the simulator. The simulator has        
allowed for testing the entire software system out of         
the pool. Auri was finished in the middle of June.          
Before that, testing was done on the last generation         
AquaUrsa starting in April.  
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APPENDIX B- ENLARGED MATERIALS 

 

 
Fig A1.​ [Top] - Detection with caustics 

[Bottom] - Detection from far away 
 

 
Fig. A2. ​[Top row] -Deep learning Object Detection with caustics on the buoy, [Middle row] - Detection in darker condition, [Bottom row] -                      
Detection from far away and with poor visibility 


