
at_mission_planner: Development Documentation

The goal of this document is to explain the basic tools that we use in the mission planning node
to create behavior trees (BT). It will explain the most commonly used pieces of the py-trees and
py-trees-ros libraries, giving examples of their use cases. This document does not intend to
explain the design patterns behind BTs, and will not impose any exact method of designing
trees. It will simply explain the pieces you should be working with so that you can plan and
design trees yourself.

This document assumes you have a basic understanding of what a BT is; you should
understand that a BT is made up of nodes and structures to control those nodes. You should
also understand the concept of “ticking” a BT.

I also will clarify here: when discussing BTs, I use the term node to refer to child behaviors that
implement the actual functionality of the tree. This means I am referring to the “leaves” of the
tree. Do not confuse this with a ROS node that runs publishers, subscribers, services, etc.

A Brief Introduction to Py-Trees
The mission planner node makes use of the py-trees (here) library, and the ros extensions to
this library. The documentation linked here is a very important reference to use when building
trees, and I recommend reading it if you want more detail. I will give a brief overview of the most
important structures here.

Sequences
Sequences in py-trees allow you to sequentially execute nodes. A sequence will execute its
children in order until either:

1. One of the children fails, at which point the sequence will fail
2. All of its children succeed, at which point the sequence will succeed

Sequences can be created with or without memory. If one of the nodes in the sequenced returns
RUNNING,

- A sequence with memory enabled will remember what child was RUNNING during the
previous tree tick, and will continue to tick that child on the next tick.

- A sequence with memory disabled will re-tick all of its children each tick, and thus start
from the first child again.

Both of these can be useful in the right situation.

https://py-trees.readthedocs.io/en/devel/


Selectors
Selectors in py-trees allow you to manage priorities, and create fallback behaviors for nodes. A
selector will execute its children in order until either:

1. One of its children succeeds, at which point the selector will succeed
2. All of its children fail, at which point the selector will fail.

Similar to sequences, selectors also can be created with or without memory. If memory is
disabled, higher priority checks will be re-checked each time. With memory enabled, once a
priority is selected, it will be pursued until it either fails or succeeds.

Since a sequence will return as soon as one child succeeds, it can be used for fallback
behavior. The highest priority action should be put as the first child, and later children will be
fallback behaviors that we can do if our high priority action fails.

Parallels
Parallels in py-trees have a form of pseudo-parallelism that allow you to tick multiple nodes “at
the same time” (in reality, they are not ticked at exactly the same time, but they will both be
ticked during the same tree tick).

Parallels have three success policies:
1. SuccessOnAll: the parallel will only return success if all children have succeeded
2. SuccessOnOne: the parallel will return success as long as at least one child has

succeeded
3. SuccessOnSelected: the parallel will return success as long as the specifically selected

children all have succeeded

If using SuccessOnAll or SuccessOnSelected, we can choose to synchronize children so that
once a child returns success, it will not be ticked again until the policy criteria is met.

Decorators
Decorators in py-trees can be thought of as the “hats” that you can put on a node to affect its
functionality. There is a long list of them that can be found here, and I will not describe each in
detail. Most of them are fairly self explanatory. Some examples include SuccessIsFailure (any
success returned will be turned into a failure), EternalGuard (a check that will be run on the
node every time it is ticked, and the node will return failure if the check fails), and Timeout (give
a time limit to a node, fail if the time limit exceeds).

https://py-trees.readthedocs.io/en/devel/decorators.html


The Blackboard
The blackboard is extremely important for BTs, as it provides a proxy for passing information
between nodes. It essentially acts as a giant dictionary that nodes can request read/write
permissions to, and they can then write/read data given a key and/or a value.

We commonly use the blackboard, since we often want to pass data from ROS topics to
behavior nodes (BN), and it is often easiest to do so through the blackboard.

Creating Nodes Using Py-Trees and Py-Trees-ROS
When working with the mission planner, you will need to define individual nodes that can be
connected with composite structures. There are two main ways to do this:

1. Create a fully custom BN
2. Use the BNs in the py-trees-ros library.

Creating a Custom Behavior Node (BN)
The py-trees documentation for this here is very good for this step. I will give a brief summary.

When you create a node, you will need to extend the py_trees.behaviour.Behaviour class. This
will result in you having the following methods you can overload:

1. __init__(): This is where you will want to do one time initialization, like reading in the
arguments to the node.

2. setup(): This is called only once. When the entire BT is being set up, a setup() call will
cascade down to every node, and will be called on your behavior. This is where you will
want to set up any ROS publishers/service clients so that they exist when the tree starts
running.

3. initialize(): This is called the first time your behavior is ticked, and any time it is not
running thereafter. Essentially, this is called on the first tick of the node, and will be
called again if the node is ticked after it has already succeeded or failed (i.e., we are
repeating some execution and the node will be ticked again).

a. This is where you will want to start your node’s actual functionality, or reset state
variables that are used when updating your node.

4. update(): This is called when your behavior is ticked. You should do any status updating
necessary, and return a node status: either SUCCESS, RUNNING, FAILURE, or
INVALID depending on what information you see during the update.

a. As an example, this is where you would check to see if a service call result has
come back, or update

b. Make sure you do not block in this function
5. terminate(): this is called whenever your node switches to a non running state: either

SUCCESS, FAILURE, or INVALID. This is where you should do any required node
cleanup.

https://py-trees.readthedocs.io/en/devel/behaviours.html


To be clear, not all of these are required in every behavior. Most behaviors will require a
setup, initialize, and update step, but many do not require any terminate step. __init__ is
mandatory.

Using the Behaviour Nodes in the py-trees-ros Library
Luckily for us, many of the node types we would frequently need already exist for us in the
py-trees-ros extension to py-trees. The module API can be found here, and for most purposes,
we prefer to use already existing nodes in this library when possible.

Some of the things this library already has created for us are:
1. A BN that creates a ROS action client and updates based on the action
2. BNs to read information from ROS topics and move it to the blackboard where other

nodes can use it
Some of the things the library unfortunately does not provide for us:

1. A BN to publish to a ROS topic
2. A BN for ROS service clients

Interfacing with ROS
To interface with ROS, we use the py-trees-ros nodes as well as some custom nodes. Details
for how to do this for publishers, subscribers, actions, and services follows below.

When discussing this, it is important to understand how py-trees-ros works with ROS in general.
When we create a BT in py-trees-ros, it can be passed a ROS node to use for any ROS
functionality within the tree. All nodes of the BT then share this same ROS node for any
publishers, actions, etc. To do this, the nodes need to retrieve the ROS node from the tree,
which can be done with the following code in the setup() function:

py-trees-ros built in behaviors will do something like this quietly under the hood.

Publishers
Since py-trees-ros does not provide any helper nodes for publishing data, we usually need to
write behaviors that publish data ourselves. We do not often need to do this, but it is quite
simple when we do. We can simply create a publisher in the setup() function, and publish the
data in the initialize() function. Then, on update() we can essentially just return success.
Example file: behaviours/drop_dropper.py

Subscribers
Subscribers are the most complicated piece to interface with using py-trees. To explain why,
consider how subscribers work in ROS. They will pick a topic to listen to, and create a callback

http://docs.ros.org/en/melodic/api/py_trees_ros/html/modules.html


function that can be run whenever new data is found on the topic. However, when you think
about this in a py-trees context, there is a bit of a complication: what happens if we get new data
when the node is not being ticked? What happens if we don’t get any data when the node is
being ticked?

While there are ways to work around this, we typically find it easiest to just interface directly with
the already existing py-trees-ros subscriber functionalities. We can then pass any information to
the blackboard so other nodes can access it. py-trees-ros has a built-in
subscriber-to-blackboard node that we use for this.
Example file: components/data_gathering.py

Actions
py-trees-ros has a built in action node that serves our purposes very well. You simply need to
pass in the action topic, type, and goal. There are two methods of passing in the goal:

1. Pass a constant goal
2. Pass a blackboard variable that contains the goal

If we know the goal will always be the same, it is easier to use a constant. If the goal might
depend on some runtime calculation, you will have to pass it through a blackboard variable first.
To do this, just create a BB var that contains the Goal() object type you need, and pass the
name to the node.
Example file: components/movement.py

Services
The structure for services is very similar to publishers. In setup() we initialize a service client, in
initialize() we make the request. The only difference is that now, in the update() method, we
should check if the service has returned before we return success. If the service has any
information we need to check in its response body, we can do that in update() as well.
Example file: behaviours/swap_vision_model.py

Developing for the Mission Planner: Project Structure
The structure of the mission planner attempts to make the code easy to re-use between
missions. We also want to abstract away the details of low level sections of the tree so that you
do not need to understand the implementation details of a movement node to write a mission.

We use the following folder structure:
- mission_planner_node.py: the main ROS node for the mission planner. This runs

some overhead to make each tree run only once. For the most part, this will not change.
- \behaviours - This is where we create behaviour nodes directly. The folder houses all

the individual behaviour nodes that we need. These will be used to create components
and missions.



- \components - this folder is where we create our layers of abstraction. We implement
features here as functions that take in parameters and return a small behaviour tree that
accomplishes a small, specific task (such as sending a movement command).

- We organize these functions into files that generally serve a similar purpose.
- While each function in these files DOES return a behaviour tree, these trees

CANNOT be directly run from the node.
- \missions - this folder houses the actual, runnable mission files.

- To create a mission, create a file here. Then, in the __init__.py file in the folder,
add the line from .[mission_name] import * to allow your mission to be run as a
launch argument.

- The file must have a function with the same name as the file. One mission per file
only.

You can think of the folders as organizing into “size”: behaviours are the smallest, as they are
individual nodes. Components are bigger - they aggregate behaviours into small, specific trees.
Missions are the largest - they aggregate components and behaviours into large trees that
accomplish a task. Behaviours → Components → Missions, where each layer will use the
layers below it.

Rendering to Visualize your Trees

We use the py-trees-render program to render our trees. It generally is run in the following way:
py-trees-render -l [detail level] [folderpath to file].[file name].[function name]

This will generate a .png, .svg, and .dot file in the folder you run the command that will contain
the tree.

Trees can get quite large, and many of the fine details of the tree are not important to view. For
this reason, we use a feature called “blackboxing” to collapse nodes in the images into “boxes”
that abstract away the unnecessary information.

To do this, we need to give every function in components a blackbox level. This is done in the
code, and can be seen in all component files. Then, when we render, we can specify a detail
level. Any components with detail levels at or below the level given in the command will be
collapsed. Most components use the “DETAIL” level.

https://py-trees.readthedocs.io/en/devel/programs.html#py-trees-render

